Sebelumnya telah dibahas bentuk umum dari model regresi linier adalah sebagai berikut:
Y=ß0+ß1X1+...+ßpXp+?
Atau,
yi=ß0+ß1x1i+...+ßpxpi+?i;i=1,...,n
dengan n adalah ukuran sampel.
Contoh 1
Dengan contoh data:
n<-1000 a<-20 b<-3 x<-runif(n,0,60) epsilon<-rnorm(n,0,1) y<-a+(b+epsilon)*x+epsilon mydata<-data.frame(x,y) plot(x,y)
reg<-lm(y~x, data=mydata) summary(reg)
## ## Call: ## lm(formula = y ~ x, data = mydata) ## ## Residuals: ## Min 1Q Median 3Q Max ## -139.793 -16.406 -0.279 16.384 136.525 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 19.69017 2.24159 8.784 <2e-16 *** ## x 2.99270 0.06405 46.726 <2e-16 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 35.51 on 998 degrees of freedom ## Multiple R-squared: 0.6863, Adjusted R-squared: 0.686 ## F-statistic: 2183 on 1 and 998 DF, p-value: < 2.2e-16diperoleh taksiran regresi:
y^=21.54118+2.92189
Contoh 2 Bagaimana dengan data berikut?
n<-10 x<-runif(n,1,5) x1<-1/x epsilon<-rnorm(n,0,1) a<-20 b<--5 y<-a+b*x1+epsilon plot(x1,y)
reg1<-lm(y~x1) summary(reg1)
## ## Call: ## lm(formula = y ~ x1) ## ## Residuals: ## Min 1Q Median 3Q Max ## -2.0220 -1.0983 -0.2073 0.8132 2.4107 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 20.512 1.131 18.136 8.78e-08 *** ## x1 -4.855 2.650 -1.832 0.104 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 1.546 on 8 degrees of freedom ## Multiple R-squared: 0.2956, Adjusted R-squared: 0.2076 ## F-statistic: 3.358 on 1 and 8 DF, p-value: 0.1043
dengan taksiran regresi
y1=19.4661+-3.8671x
Contoh 3 Bagaimana dengan data berikut?
n<-10 x<-runif(n,1,5) x2<-x^2 epsilon<-rnorm(n,0,1) a<-20 b1<--5 b2<-3 y<-a+b1*x+b2*x2+epsilon plot(x,y)
reg2<-lm(y~x+x2) summary(reg2)
## ## Call: ## lm(formula = y ~ x + x2) ## ## Residuals: ## Min 1Q Median 3Q Max ## -0.51684 -0.30445 0.04815 0.25249 0.70930 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 20.6618 1.1983 17.243 5.42e-07 *** ## x -5.5020 0.8793 -6.257 0.000421 *** ## x2 3.1381 0.1447 21.689 1.12e-07 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.4425 on 7 degrees of freedom ## Multiple R-squared: 0.9994, Adjusted R-squared: 0.9992 ## F-statistic: 5675 on 2 and 7 DF, p-value: 5.813e-12dengan model:
y=ß0+ß1x1+ß2x2
dengan x1=x,x2=x2, diperoleh taksiran regresi
y^=20.1519+-5.3006x1+3.0358x2
Contoh 4 Bagaimana dengan data berikut?
n<-10 x<-runif(n,1,5) x3<-log(x) epsilon<-rnorm(n,0,1) a<-20 b<--5 y<-a+b*x3+epsilon plot(x,y)
reg3<-lm(y~x3) summary(reg3)
## ## Call: ## lm(formula = y ~ x3) ## ## Residuals: ## Min 1Q Median 3Q Max ## -1.9032 -0.3924 -0.2774 0.4752 1.4207 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 19.5957 0.7114 27.547 3.25e-09 *** ## x3 -4.5603 0.6752 -6.754 0.000145 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 1.031 on 8 degrees of freedom ## Multiple R-squared: 0.8508, Adjusted R-squared: 0.8321 ## F-statistic: 45.61 on 1 and 8 DF, p-value: 0.0001445dengan model:
y=ß0+ß1log(x)
diperoleh taksiran regresi
y^=20.3090+-5.3388log(x)
Contoh 5 Bagaimana dengan data berikut?
n<-10 x<-runif(n,1,5) epsilon<-rnorm(n,0,1) a<-1 b<-2 y<-exp(a+b*x+epsilon) reg4<-lm(y~x) summary(reg4)
## ## Call: ## lm(formula = y ~ x) ## ## Residuals: ## Min 1Q Median 3Q Max ## -11730 -5874 -1888 3510 18550 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -25745 11516 -2.236 0.0558 . ## x 11780 4000 2.945 0.0186 * ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 9384 on 8 degrees of freedom ## Multiple R-squared: 0.5203, Adjusted R-squared: 0.4603 ## F-statistic: 8.675 on 1 and 8 DF, p-value: 0.01856
par(mfrow=c(1,2)) plot(x,y) abline(reg=lm(y~x), col="red", lwd=2, main="Model Reg4") plot(x,log(y)) abline(reg=lm(log(y)~x), col="blue", lwd=2, main="Model Reg5")diperoleh hasil taksiran:
y^=-12411+8145x
Bandingkan dengan hasil berikut:
reg5<-lm(log(y)~x) summary(reg5)
## ## Call: ## lm(formula = log(y) ~ x) ## ## Residuals: ## Min 1Q Median 3Q Max ## -1.2907 -0.5751 0.0904 0.3546 1.6692 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -1.3557 1.0730 -1.264 0.242 ## x 2.9665 0.3726 7.961 4.52e-05 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.8743 on 8 degrees of freedom ## Multiple R-squared: 0.8879, Adjusted R-squared: 0.8739 ## F-statistic: 63.38 on 1 and 8 DF, p-value: 4.524e-05
log(y)^=0.7368+2.0703x
Dari kelima contoh di atas, yang manakah yang merupakan model linier? Kenapa?
No comments:
Post a Comment
Relevant & Respectful Comments Only.