Outline:
- Referensi/Materi
- Referensi Video
- Code/Module
- Forum Diskusi
Referensi/Materi
- https://static1.squarespace.com/static/5aff705c5ffd207cc87a512d/t/5b0378cc575d1f9eea15b56d/1526954189706/Numerical+Methods.pdf
- http://pages.cs.wisc.edu/~amos/412/lecture-notes/lecture18.pdf
- Materi Bahasa Indonesia
Referensi Video
Open Code in Google Colaboratory
Metode Numerik
</center>
Integral Numerik ¶
(C) Taufik Sutanto
taudata Analytics ~ https://taudata.blogspot.com/2022/04/mfdsnm-08.html
IX. Integral Numerik:
- Pendahuluan
- Quadrature
- Trapezoidal
- Simpson
Integral Numerik - Quadrature (Kalkulus)
- Definite Integral (berbatas) $ \int_a^b f(x) dx $
- Apa maknanya?
- Apa syaratnya?
- Apa contoh aplikasinya?
- Segi empat sebanyak-banyaknya atau sekecil-kecilnya?
- Dengan kata lain, sebaiknya parameternya lebar segi empat atau banyak segi empat?
- Bagaimana jika kurva dibawah sumbu x ?
- Solusi Eksak $ \int_a^b f(x) dx = F(b) - F(a)$ dimana F adalah integral dari f
Definisi menurut Kalkulus¶
Luas segi empat (persegi panjang/Quadrilateral-Rectangle)
Error Menurut Teori (Analitik)
- Bagaimana memahami teorema ini?
Secara visual
Eksperimen Numerik (empiris)?
In [1]:
import numpy as np
np.pi
Out[1]:
3.141592653589793
In [2]:
# Definisi Fungsi dan parameter-parameter permasalahan
def f(x):
return np.sin(x) # change this to any function
#return x**2+x-7#x**2 + 7
a = 0
b = np.pi #1 #314.1592653589793
eksak = 2
In [3]:
n = 10
Xi = np.linspace(a,b,n)
h = Xi[1]-Xi[0]
Xi
Out[3]:
array([0. , 0.34906585, 0.6981317 , 1.04719755, 1.3962634 , 1.74532925, 2.0943951 , 2.44346095, 2.7925268 , 3.14159265])
In [4]:
Hasil_Integral = 0
for x in Xi:
Hasil_Integral = Hasil_Integral + abs(f(x)) # Mengapa absolut?
Hasil_Integral = Hasil_Integral * h
print('Hasil integral = ', Hasil_Integral)
print('Error mutlak = ', abs(Hasil_Integral-eksak))
print('Error Relatif = ', abs(Hasil_Integral-eksak)/eksak)
Hasil integral = 1.9796508112164832 Error mutlak = 0.02034918878351677 Error Relatif = 0.010174594391758385
In [5]:
def F(x):
return (1/3)*x**3 + 0.5*x**2-7*x
eksak = abs(F(1)-F(0))
eksak
Out[5]:
6.166666666666667
Eksperimen jika "h" semakin mengecil (n membesar)?¶
In [6]:
N = [n for n in range(2,100)]
e1 = [] # Error
for n in N:
Xi = np.linspace(a,b,n)
h = (b-a)/n
integral = 0
for x in Xi:
integral = integral + abs(f(x))
e1.append(abs(h*integral-eksak))
In [7]:
# Let's plot the error
import matplotlib.pyplot as plt
plt.plot(N, e1, 'r')
plt.xlabel('# of partisi');plt.ylabel('error');plt.show()
# Secara numerik permasalahan integral jauh lebih mudah ketimbang turunan .... kenapa?
Let's stop and think of how this works¶
- Secara logika berarti seharusnya kalau pakai trapesium dan bukan segi empat, maka errornya lebih kecil.
Integral Numerik - Trapezoid (trapesium)
Luas Trapesium:
Error secara teori
In [8]:
# https://github.com/markjay4k/fourier-transform/blob/master/numerical%20integration.ipynb
%config InlineBackend.figure_format = 'svg'
plt.rcParams['figure.figsize'] = (13, 8)
plt.rcParams.update({'font.size': 19})
def f(x):
return np.sin(x) # change this to any function
def trap_plot(n_points, namaFungsi = ''):
x = np.linspace(0, np.pi, 1000) # continuous
x_i = np.linspace(0, np.pi, n_points) # discrete
plt.plot(x, f(x), label=namaFungsi)
plt.plot(x_i, f(x_i), '-o', label=r'$Trap$({})'.format(n_points))
plt.fill(x_i, f(x_i), color='C1', alpha=0.15)
plt.vlines(x_i, 0, f(x_i), color='C1', linestyle=':')
plt.xticks(x_i, [r'$x_{}$'.format(n) for n in range(n_points)])
plt.yticks([0, 1], ['$0$', '$1$'])
plt.legend(loc='best'); plt.ylim(0, 1.05); plt.show()
trap_plot(10,'sin(x)')
trapezoid rule equation
In [9]:
def trap(Xi):
# computes the integral of f using trapezoid rule
area = 0
N = len(Xi)
h = Xi[1] - Xi[0]
for k in range(1, N):
area += (abs(f(Xi[k - 1])) + abs(f(Xi[k])))
return area * h / 2
Numerical Experiment¶
In [10]:
n = 10
a = 0
b = np.pi #314.1592653589793
Xi = np.linspace(a,b,n)
eksak = 2
Hasil_Integral_Trapezoid = trap(Xi)
print('Hasil integral = ', Hasil_Integral_Trapezoid)
print('Error mutlak = ', abs(Hasil_Integral_Trapezoid-eksak))
print('Error Relatif = ', abs(Hasil_Integral_Trapezoid-eksak)/eksak)
Hasil integral = 1.979650811216484 Error mutlak = 0.020349188783516103 Error Relatif = 0.010174594391758052
In [11]:
# Plot Error
N = [n for n in range(2,100)]
e2 = [] # Error
for n in N:
Xi = np.linspace(a,b,n)
#h = (b-a)/n
integral = trap(Xi)
e2.append(abs(integral-eksak))
plt.plot(N, e2, 'g')
plt.xlabel('# of partisi');plt.ylabel('error');plt.show()
Hhhhhmmm... kalau trapesium berhasil lebih baik, berarti kalau kurva akan lebih baik lagi?¶
Simpson's Rule
Error Metode Simpson Secara Analytic
In [12]:
# Warning, this code is "dumb"
def simpson(x):
# computes the integral of f using Simpson's rule
N = len(x)
area = 0
h = x[1] - x[0]
area += abs(f(x[0]))+abs(f(x[-1]))
p = True
for k in range(1, N):
if p:
area += abs(4*f(x[k]))
p = False
else:
area += abs(2*f(x[k]))
p = True
return area*(h/3)
In [13]:
eksak = 2
a = 0
b = np.pi #314.1592653589793
n = 4
Xi = np.linspace(a,b,2*n)
Hasil_Integral_Simpson = simpson(Xi)
print('Hasil integral = ', Hasil_Integral_Simpson)
print('Error mutlak = ', abs(Hasil_Integral_Simpson-eksak))
print('Error Relatif = ', abs(Hasil_Integral_Simpson-eksak)/eksak)
Hasil integral = 1.9663166787658923 Error mutlak = 0.033683321234107666 Error Relatif = 0.016841660617053833
In [14]:
# Plot Error
def f(x):
return np.sin(x)
N = [n for n in range(2,100)]
e3 = [] # Error
for n in N:
Xi = np.linspace(a,b,2*n)
h = (b-a)/n
integral = simpson(Xi)
e3.append(abs(integral-eksak))
plt.plot(N, e3, 'b')
plt.xlabel('# of partisi');plt.ylabel('error');plt.show()
In [15]:
plt.plot(N, e1, 'r')
plt.plot(N, e2, 'g')
plt.plot(N, e3, 'b')
plt.xlabel('# of partisi');plt.ylabel('error');plt.show()
Latihan Soal¶
- $\int_1^3 3x^2 - 2$
- n = 2
Hitung Error Relatif dari pendekatan berikut:
- Quadrature (segi empat)
- Trapezoid
- Simpson
In [16]:
def f(x):
return 3*x**2 - 2
def FF(x):
return x**3 - 2*x
eksak = FF(3)-FF(1)
h = (3-1)/2
Q = h * (f(1) + f(2)) #h * (f(1) + f(1+h))
T = (h/2) * ( f(1)+ 2* f(2) +f(3)) #(h/2) * ( f(1)+ 2* f(1+h) +f(1+2*h))
S = (h/3)*(f(1)+4*f(1.5)+f(2))+(h/3)*(f(2)+4*f(2.5)+f(3)) #(h/3) * ( f(1) + 4*f(1+h/2) + f(1+h) ) + (h/3) * (f(1+h) + 4*f(1+3*h/2) + f(3))
print('h = ', h)
print('Integral Eksak = ', eksak)
print('Error Relatif Quadrature = ',abs(eksak-Q)/abs(eksak))
print('Error Relatif Trapezoid = ',abs(eksak-T)/abs(eksak))
print('Error Relatif Simpson = ',abs(eksak-S)/abs(eksak))
h = 1.0 Integral Eksak = 22 Error Relatif Quadrature = 0.5 Error Relatif Trapezoid = 0.045454545454545456 Error Relatif Simpson = 1.0
End of Module¶
Referensi:
- Johansson, R. (2018). Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib. Apress.
- John H. Mathews, Numerical Methods for Mathematics, Prentice Hall, 1992 [Refernsi Utama]
- Heath, M. T. (2018). Scientific computing: an introductory survey (Vol. 80). SIAM.
- Conte, S. D., u0026amp; De Boor, C. (2017). Elementary numerical analysis: an algorithmic approach (Vol. 78). SIAM.
No comments:
Post a Comment
Relevant & Respectful Comments Only.