- Watch The Video Here: https://youtu.be/nLINKnoIl40
taudata Analytics
DL 02 - Pendahuluan PyTorch untuk Deep learning
https://taudataid.github.io/dl02/
Video Penjelasan:
Instalasi ¶
- Sangat mudah, ikuti perintah di https://pytorch.org/get-started/locally/
- Perhatikan harware yang dimiliki.
- Saat ini AMD (Rocm) sudah disupport oleh PyTorch dan TensorFlow
- Perhatikan jika anda install PyTorch dan Tensorflow pada environment yang sama.
Why Torch? ¶
In [2]:
# Load Module
import torch, numpy as np
In [3]:
# Kalau saya sukanya cek versi dan apakah PyTorch (atau tensorflow) sudah dapat mengakses GPU atau belum
print("Using Numpy and Pytorch versions = {}, {}".format(np.__version__, torch.__version__))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device, end=', ')
if device.type == 'cuda': #Additional Info when using cuda
print(torch.cuda.get_device_name(0))
print('Currently Memory Allocated, Cached =', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB, ', round(torch.cuda.memory_reserved(0)/1024**3,1), 'GB')
Using Numpy and Pytorch versions = 1.21.5, 1.11.0+cu113 Using device: cuda, NVIDIA GeForce RTX 3060 Laptop GPU Currently Memory Allocated, Cached = 0.0 GB, 0.0 GB
Tensor ¶
Tensors are a specialized data structure that are very similar to arrays and matrices. In PyTorch, we use tensors to encode the inputs and outputs of a model, as well as the model’s parameters.
Tensors are similar to NumPy’s ndarrays, except that tensors can run on GPUs or other specialized hardware to accelerate computing. If you’re familiar with ndarrays, you’ll be right at home with the Tensor API. If not, follow along in this quick API walkthrough.
In [4]:
# Tensor dari Python List
data = [[1, 2], [3, 4]]
x_data = torch.tensor(data)
x_data
Out[4]:
tensor([[1, 2], [3, 4]])
In [5]:
x_data.shape, x_data.type()
Out[5]:
(torch.Size([2, 2]), 'torch.LongTensor')
Penting untuk memahami Tipe Tensor¶
- Beberapa permasalahan sensitive terhadap akurasi Floating Point
- Menghindari overflow/underflow
In [6]:
torch.finfo(torch.float16)
Out[6]:
finfo(resolution=0.001, min=-65504, max=65504, eps=0.000976562, tiny=6.10352e-05, dtype=float16)
In [7]:
# Tensor dari Numpy
np_array = np.array(data)
x_np = torch.from_numpy(np_array)
x_np
Out[7]:
tensor([[1, 2], [3, 4]], dtype=torch.int32)
In [8]:
# Ukuran & property (shape, datatype) sama, tapi element berbeda.
# unless explicitly overridden.
x_ones = torch.ones_like(x_data) # retains the properties of x_data
print(f"Ones Tensor: \n {x_ones} \n")
x_rand = torch.rand_like(x_data, dtype=torch.float) # overrides the datatype of x_data
print(f"Random Tensor: \n {x_rand} \n")
Ones Tensor: tensor([[1, 1], [1, 1]]) Random Tensor: tensor([[0.6655, 0.1963], [0.0498, 0.6696]])
In [9]:
x_ones.shape, x_ones.type()
Out[9]:
(torch.Size([2, 2]), 'torch.LongTensor')
Warning on "Device" and "Dtype"¶
- Jika memang ingin menjalankan DL kita di GPU, maka sangat penting secara eksplisit menetapkan Tipe dan Device
- Terutama pada input variabel DL kita.
- Data di device yang tepat DAN Model yang dijalankan di GPU adalah kunci sukses menjalankan DL-nya di GPU
- Misal kelak kita akan menggunakan perintah berikut:
- model = torch.nn.Sequential(*modules).to(device)
- Begitu juga pada Grad Function di DL kita nanti.
Contoh¶
In [10]:
dtype = torch.float
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# diatas sebenarnya ini sudah di define, diulang utk mempertegas
# instead of
data = [[1, 2], [3, 4]]
x_data = torch.tensor(data)
print(x_data)
# Sebaiknya lakukan ini jika memang ingin menjalankan DL di GPU
x_data = torch.tensor(data, dtype=dtype, device=device)
x_data
tensor([[1, 2], [3, 4]])
Out[10]:
tensor([[1., 2.], [3., 4.]], device='cuda:0')
Warning 2¶
- Jika DL sudah selesai, Tensor yang ada di GPU tidak bisa langsung di convert ke Numpy.
- Harus di copy ke CPU terlebih dahulu
In [11]:
try:
xx = x_data.detach().numpy()
print(xx)
except Exception as err_:
print(err_)
can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
What we should do instead:¶
In [12]:
try:
xx = x_data.cpu().detach().numpy()
print(xx)
except Exception as err_:
print(err_)
[[1. 2.] [3. 4.]]
In [13]:
# dimensi Tensor adalah Tuple
shape = (2, 3)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)
print(f"Random Tensor: \n {rand_tensor} \n")
print(f"Ones Tensor: \n {ones_tensor} \n")
print(f"Zeros Tensor: \n {zeros_tensor}")
Random Tensor: tensor([[0.5431, 0.7966, 0.5175], [0.7834, 0.5468, 0.5039]]) Ones Tensor: tensor([[1., 1., 1.], [1., 1., 1.]]) Zeros Tensor: tensor([[0., 0., 0.], [0., 0., 0.]])
In [14]:
# Check Tensor ada dimana
tensor = torch.rand(3, 4)
print(f"Device tensor is stored on: {tensor.device}")
Device tensor is stored on: cpu
In [15]:
# Bisa pindah ke GPU ... perhatikan kita bisa punya >1 GPU, index GPU mulai dari 0
if torch.cuda.is_available():
tensor = tensor.to('cuda')
print(f"Device tensor is stored on: {tensor.device}")
Device tensor is stored on: cuda:0
In [16]:
# Slicing Tensor = Numpy
tensor = torch.ones(4, 4)
tensor[:,1] = 0.0
tensor[1,:] = -2.0
tensor[-1,-1] = 99.0
print(tensor)
tensor([[ 1., 0., 1., 1.], [-2., -2., -2., -2.], [ 1., 0., 1., 1.], [ 1., 0., 1., 99.]])
In [17]:
# Operasi Concatenasi (dan operasi lainnya) juga mirip dengan Numpy
t1 = torch.cat([tensor, tensor, tensor], dim=1)
print(t1)
tensor([[ 1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.], [-2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2.], [ 1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.], [ 1., 0., 1., 99., 1., 0., 1., 99., 1., 0., 1., 99.]])
In [18]:
# Operasi Tensor = Numpy, berarti element Wise ... Hati-hati tidak seperti Matlab.
print(f"tensor.mul(tensor) \n {tensor.mul(tensor)} \n")
# Alternative syntax:
print(f"tensor * tensor \n {tensor * tensor}")
tensor.mul(tensor) tensor([[1.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00], [4.0000e+00, 4.0000e+00, 4.0000e+00, 4.0000e+00], [1.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00], [1.0000e+00, 0.0000e+00, 1.0000e+00, 9.8010e+03]]) tensor * tensor tensor([[1.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00], [4.0000e+00, 4.0000e+00, 4.0000e+00, 4.0000e+00], [1.0000e+00, 0.0000e+00, 1.0000e+00, 1.0000e+00], [1.0000e+00, 0.0000e+00, 1.0000e+00, 9.8010e+03]])
In [19]:
# Perkalian Matrix
print(f"tensor.matmul(tensor.T) \n {tensor.matmul(tensor.T)} \n")
# Alternative syntax:
print(f"tensor @ tensor.T \n {tensor @ tensor.T}")
tensor.matmul(tensor.T) tensor([[ 3.0000e+00, -6.0000e+00, 3.0000e+00, 1.0100e+02], [-6.0000e+00, 1.6000e+01, -6.0000e+00, -2.0200e+02], [ 3.0000e+00, -6.0000e+00, 3.0000e+00, 1.0100e+02], [ 1.0100e+02, -2.0200e+02, 1.0100e+02, 9.8030e+03]]) tensor @ tensor.T tensor([[ 3.0000e+00, -6.0000e+00, 3.0000e+00, 1.0100e+02], [-6.0000e+00, 1.6000e+01, -6.0000e+00, -2.0200e+02], [ 3.0000e+00, -6.0000e+00, 3.0000e+00, 1.0100e+02], [ 1.0100e+02, -2.0200e+02, 1.0100e+02, 9.8030e+03]])
In [20]:
# Tanda "_" artinya operasi "inplace" ... ini penting untuk diingat untuk menekan memory. Terutama di GPU
print(tensor, "\n")
tensor.add_(5)
print(tensor)
tensor([[ 1., 0., 1., 1.], [-2., -2., -2., -2.], [ 1., 0., 1., 1.], [ 1., 0., 1., 99.]]) tensor([[ 6., 5., 6., 6.], [ 3., 3., 3., 3.], [ 6., 5., 6., 6.], [ 6., 5., 6., 104.]])
In [21]:
# Tentu saja Tensor dapat diubah kembali kke numpy
# Coba sampaikan di kolom komentar, kira-kira kapan kita butuh hal ini?
t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")
t: tensor([1., 1., 1., 1., 1.]) n: [1. 1. 1. 1. 1.]
In [22]:
# Tapi "reference to variable" seperti di adsp-01 tetap berlaku (pythonic)
# perubahan di t akan merubah n
t.add_(1)
print(f"t: {t}")
print(f"n: {n}")
t: tensor([2., 2., 2., 2., 2.]) n: [2. 2. 2. 2. 2.]
Tapi kalau Tensor ada di GPU jadi agak beda¶
In [23]:
t = torch.ones(5, dtype=dtype, device=device)
print(t)
try:
print(t.numpy())
except Exception as err_:
print(err_)
tensor([1., 1., 1., 1., 1.], device='cuda:0') can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
What we need to do instead¶
- Pindahkan ke CPU dulu
In [24]:
t = torch.ones(5, dtype=dtype, device=device)
print(t)
try:
print(t.cpu().numpy())
except Exception as err_:
print(err_)
tensor([1., 1., 1., 1., 1.], device='cuda:0') [1. 1. 1. 1. 1.]
Hati-hati Tensor (GPU) hanya bisa diaplikasikan ke fungsi di Torch¶
- Alternativenya juggle ke numpy CPU (seperti di cell sebelumnya), tapi ini biasanya mempengaruhi performa.
- Sebaiknya gunakan fungsi Torch saja.
- Fungsi Torch juga wajib menggunakan parameter input tensor (error jika input = array)
In [25]:
t = torch.ones(5, dtype=dtype, device=device)
try:
print("Numpy (CPU) Function: ", np.sin(t))
except Exception as err_:
print(err_)
try:
print("Torch Function: ", torch.sin(t))
except Exception as err_:
print(err_)
can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first. Torch Function: tensor([0.8415, 0.8415, 0.8415, 0.8415, 0.8415], device='cuda:0')
In [26]:
# Torch Function only works for tensors
t = np.ones(5)
try:
print("Torch Function: ", torch.sin(t))
except Exception as err_:
print(err_)
sin(): argument 'input' (position 1) must be Tensor, not numpy.ndarray
In [27]:
# perbandingan logic tensor dan Float masih bisa dilakukan
t = torch.ones(5, dtype=dtype, device=device)
print("elemen terakhir t", t[-1])
try:
print(t[-1]>2.0)
except Exception as err_:
print(err_)
elemen terakhir t tensor(1., device='cuda:0') tensor(False, device='cuda:0')
In [28]:
# Tapi walau t[-1] adalah sebuah nilai, tapi ini tetap tensor sehingga ...
# Expected karena numpy ndak bisa bekerja di GPU (tensor)
try:
print(np.isnan(t[-1]))
except Exception as err_:
print(err_)
can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
In [29]:
print(t[-1].cpu().numpy())
1.0
Perhatikan bahwa konversi diatas adalah Copy memory (GPU & CPU)¶
- Jika mau memindahkan Tensor dan mengeluarkannya dari Computational Graph-nya PyTorch maka gunakan perintah Detach
- Detach juga digunaan jika tensor kita punya attribut Grad, dengan kata lain kita tidak bisa convert ke numpy jika tensornya punya attribut "grad".
- Jika konsep grad membingungkan jangan hawatir, module setelah ini akan membahas hal ini.
In [30]:
t = t.cpu().detach().numpy()
t
Out[30]:
array([1., 1., 1., 1., 1.], dtype=float32)
Flatten .. Bukan karena Bumi itu datar :)¶
In [35]:
t = torch.tensor([[[1, 2],
[3, 4]],
[[5, 6],
[7, 8]]])
print(t, end='\n\n')
print(t.flatten().numpy())
tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) [1 2 3 4 5 6 7 8]
Catatan Penting terakhir¶
- Beberapa model DL yang ada terkadang "menipu", karena sebenarnya modelnya sensitive terhadap initial weights namun tidak dilaporkan.
- Sebaiknya minimal selalu Gunakan Seed di awal code DL kita:
- Nilai seed bebas, biasanya by default adalah 0.
In [13]:
np.random.seed(0)
torch.manual_seed(0)
Out[13]:
<torch._C.Generator at 0x1d288b743b0>
No comments:
Post a Comment
Relevant & Respectful Comments Only.