Public sentiment is everything. With public sentiment, nothing can fail. Without it, nothing can succeed. ~ Abraham Lincoln. |
Video:
Codes:
Natural Language Processing dan Text Mining (NLPTM)
Social Media Analytics (SMA)
https://taudata.blogspot.com
NLPTM-06: Pendahuluan Sentimen Analysis
https://taudata.blogspot.com/2022/05/nlptm-06.html
(C) Taufik Sutanto ~ taudata Analytics
Outline :¶
- Corpus-Based Sentiment Analysis
- Metode Supervised untuk Sentiment Analysis
In [1]:
# Jalankan Cell ini "HANYA" jika anda menggunakan Google Colab
# Jika di jalankan di komputer local, silahkan lihat NLPTM-02 untuk instalasinya.
import warnings; warnings.simplefilter('ignore')
import nltk
try:
import google.colab; IN_COLAB = True
!wget https://raw.githubusercontent.com/taudata-indonesia/eLearning/master/taudataNlpTm.py
!mkdir data
!wget -P data/ https://raw.githubusercontent.com/taudata-indonesia/eLearning/master/data/slang.txt
!wget -P data/ https://raw.githubusercontent.com/taudata-indonesia/eLearning/master/data/stopwords_id.txt
!wget -P data/ https://raw.githubusercontent.com/taudata-indonesia/eLearning/master/data/stopwords_en.txt
!wget -P data/ https://raw.githubusercontent.com/taudata-indonesia/eLearning/master/data/kata_dasar.txt
!wget -P data/ https://raw.githubusercontent.com/taudata-indonesia/eLearning/master/data/wn-ind-def.tab
!wget -P data/ https://raw.githubusercontent.com/taudata-indonesia/eLearning/master/data/wn-msa-all.tab
!wget -P data/ https://raw.githubusercontent.com/taudata-indonesia/eLearning/master/data/ind_SA.csv
!wget -P data/ https://raw.githubusercontent.com/taudata-indonesia/eLearning/master/data/all_indo_man_tag_corpus_model.crf.tagger
!pip install spacy python-crfsuite unidecode textblob sastrawi
!python -m spacy download xx
!python -m spacy download en_core_web_sm
nltk.download('popular')
except:
IN_COLAB = False
print("Running the code locally, please make sure all the python module versions agree with colab environment and all data/assets downloaded")
Running the code locally, please make sure all the python module versions agree with colab environment and all data/assets downloaded
In [2]:
# Mulai dengan loading data
import nltk, pickle
from sklearn.datasets import fetch_20newsgroups
try:
f = open('data/20newsgroups.pckl', 'rb')
data = pickle.load(f)
f.close()
except:
categories = ['sci.med', 'talk.politics.misc', 'rec.autos']
data = fetch_20newsgroups(categories=categories,remove=('headers', 'footers', 'quotes'))
f = open('data/20newsgroups.pckl', 'wb')
pickle.dump(data, f)
f.close()
'Done'
Out[2]:
'Done'
In [3]:
# Merubah data ke bentuk yang biasa kita gunakan
D = [doc for doc in data.data]
Y = data.target
'Done'
Out[3]:
'Done'
In [4]:
set(Y)
Out[4]:
{0, 1, 2}
In [5]:
D[0]
Out[5]:
'I want to get a car alarm and I am thinking about getting an Ungo Box.\n Does anyone out there have any knowledge or experience with any of\n these alarms? How about price ranges for the different models?\n Are these good car alarms? Please email me any responces.\n\n cak3@ns3.lehigh.edu'
In [6]:
# preprocessing
import taudataNlpTm as tau
from tqdm import tqdm
stops, lemmatizer = tau.LoadStopWords(lang='en')
for i,d in tqdm(enumerate(D)):
D[i] = tau.cleanText(d, lemma=lemmatizer, stops = stops, symbols_remove = True, min_charLen = 2)
print(D[0])
1653it [28:37, 1.04s/it]
car alarm thinking ungo box knowledge experience alarms price ranges models good car alarms email responces
In [7]:
# Bentuk VSM-nya
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf_vectorizer = TfidfVectorizer(lowercase=True, stop_words='english',smooth_idf= True, sublinear_tf=True,
ngram_range=(1, 2), max_df=0.90, min_df=2)
In [8]:
from sklearn.model_selection import train_test_split
seed = 99
x_train, x_test, y_train, y_test = train_test_split(D, Y, test_size=0.3, random_state=seed)
x_train = tfidf_vectorizer.fit_transform(x_train) # "Fit_Transform"
x_test = tfidf_vectorizer.transform(x_test) # Perhatikan disini hanya "Transform"
print(x_train.shape, x_test.shape) # Jumlah kolom Sama ==> ini penting
(1157, 12400) (496, 12400)
In [9]:
# Jangan lupa langkah penting ini! ...
# Kenapa ada yang kosong?... coba fikirkan ...
def hapusKosong(X,Y):
Y = Y[X.getnnz(1)>0] # delete label dokumen yang memiliki row =0 di tfidf-nya
X = X[X.getnnz(1)>0] # Remove Zero Rows
return X, Y
x_train, y_train = hapusKosong(x_train, y_train)
x_test, y_test = hapusKosong(x_test, y_test)
print(x_train.shape, x_test.shape)
(1105, 12400) (481, 12400)
In [10]:
# Kita gunakan metric yang umum
from sklearn.metrics import accuracy_score
In [11]:
# Naive Bayes: http://scikit-learn.org/stable/modules/naive_bayes.html
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
nbc = gnb.fit(x_train.toarray(), y_train) # Kelemahan Implementasinya disini
y_nbc = nbc.predict(x_test.toarray())
accuracy_score(y_test, y_nbc)
# Hati-hati Sparse ==> Dense bisa memenuhi memory untuk data relatif cukup besar
# Akurasi cukup baik
Out[11]:
0.8690228690228691
In [12]:
# Decision Tree: http://scikit-learn.org/stable/modules/tree.html
from sklearn import tree
DT = tree.DecisionTreeClassifier()
DT = DT.fit(x_train, y_train)
y_DT = DT.predict(x_test)
accuracy_score(y_test, y_DT)
# Akurasi relatif rendah ==> Mengapa?
Out[12]:
0.7276507276507277
In [13]:
# Mari coba perbaiki dengan Random Forest
# http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
from sklearn.ensemble import RandomForestClassifier
RandomForest = RandomForestClassifier()
RandomForest.fit(x_train, y_train)
y_RF = RandomForest.predict(x_test)
accuracy_score(y_test, y_RF)
# Sedikit membaik (expected)
Out[13]:
0.8565488565488566
In [14]:
# SVM: http://scikit-learn.org/stable/modules/svm.html
from sklearn import svm
dSVM = svm.SVC(decision_function_shape='ovo') # oneversus one SVM
dSVM.fit(x_train, y_train)
y_SVM = dSVM.predict(x_test)
accuracy_score(y_test, y_SVM)
# Mengapa akurasinya rendah? Mengejutkan?
Out[14]:
0.918918918918919
In [15]:
# Neural Network: http://scikit-learn.org/stable/modules/neural_networks_supervised.html
from sklearn.neural_network import MLPClassifier
NN = MLPClassifier(hidden_layer_sizes=(30, 40))
NN.fit(x_train, y_train)
y_NN = NN.predict(x_test)
accuracy_score(y_test, y_NN)
# Cukup Baik, coba rubah jumlah layer dan Neuron
Out[15]:
0.920997920997921
Tunggu dulu ... yang kita lakukan belum cukup valid/objektif ... Mengapa?¶
Cross Validation
In [16]:
# Cross validation
# http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html
from sklearn.model_selection import cross_val_score
import time
# perhatikan sekarang kita menggunakan seluruh data
# Bisa juga CV di training data ==> train, Test, Val splittting system
X = tfidf_vectorizer.fit_transform(D) # "Fit_Transform"
svm_ = svm.SVC(kernel='linear', decision_function_shape='ovo')
mulai = time.time()
scores_svm = cross_val_score(svm_, X, Y, cv=10, n_jobs=-2)
waktu = time.time() - mulai
# Interval Akurasi 95 CI
print("Accuracy SVM: %0.2f (+/- %0.2f), Waktu = %0.3f detik" % (scores_svm.mean(), scores_svm.std() * 2, waktu))
Accuracy SVM: 0.91 (+/- 0.04), Waktu = 2.888 detik
In [17]:
# Bandingkan dengan Neural Network
nn_ = MLPClassifier(hidden_layer_sizes=(30, 40))
mulai = time.time()
scores_nn = cross_val_score(nn_, X, Y, cv=10, n_jobs=-2)
waktu = time.time() - mulai
# Interval Akurasi 95 CI
print("Accuracy ANN: %0.2f (+/- %0.2f), Waktu = %0.3f detik" % (scores_nn.mean(), scores_nn.std() * 2, waktu))
Accuracy ANN: 0.92 (+/- 0.05), Waktu = 56.560 detik
In [18]:
# Kita bisa juga mengeluarkan metric evaluasi lainnya
scores = cross_val_score(svm_, X, Y, cv=10, scoring='f1_macro')
print("F1-Score: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
# scoring pilih dari sini: http://scikit-learn.org/stable/modules/model_evaluation.html
F1-Score: 0.91 (+/- 0.04)
In [19]:
%matplotlib inline
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt; plt.style.use('classic')
import numpy as np, pandas as pd
In [20]:
df = pd.DataFrame({'SVM':scores_svm,'ANN':scores_nn})
sns.boxplot(data=df)
plt.show()
Apakah sentiment analysis?
Sentiment Analysis adalah suatu proses komputasi untuk menentukan apakah suatu penrnyataan bermakna positive, negative, atau netral.
Terkadang disebut juga sebagai opinion mining.
Contoh aplikasi Sentiment Analysis
- Business: tanggapan konsumen atas suatu produk.
- Politics: Sentimen masyarakat sebagai strategi pemenangan pemilu/pilkada.
In [21]:
from textblob import TextBlob
# Lexicon Based berdasarkan
# pattern = https://www.clips.uantwerpen.be/pages/pattern-en#sentiment
Sentence = "I hate Bakpia"
testimonial = TextBlob(Sentence)
print(testimonial.sentiment)
print('Polarity=Sentimen =', testimonial.sentiment.polarity)
Sentiment(polarity=-0.8, subjectivity=0.9) Polarity=Sentimen = -0.8
Sentiment menghasilkan Tuple berpasangan (Polaritas, Subjectivitas).
Polaritas memiliki nilai [-1, 1] ==> negative~positive Sentimen
Subjectivity memiliki nilai antara 0 sampai 1, dimana 0 paling objective dan 1 paling subjective.
Bagaimana Dengan Bahasa Indonesia?¶
[A simple trick]
In [22]:
try:
kalimat = 'Saya suka Bakpia'
K = TextBlob(kalimat).translate(to='en')
print(type(K), K)
except:
K = False
print("Fungsi ini deprecated di TextBlob. Anda bisa gunakan https://translate.google.com secara manual\
atau secara automatis dengan menggunakan API-nya")
Fungsi ini deprecated di TextBlob. Anda bisa gunakan https://translate.google.com secara manual atau secara automatis dengan menggunakan API-nya
In [23]:
if not K:
K = TextBlob("Bakpia is so delicious")
print(K.sentiment)
print('Polarity=Sentimen =', K.sentiment.polarity)
Sentiment(polarity=1.0, subjectivity=1.0) Polarity=Sentimen = 1.0
In [24]:
def SenSubModMood_ID(kalimat):
K = TextBlob(kalimat).translate(to='en')
pol,sub = K.sentiment
if pol>0:
pol='positive'
elif pol<0:
pol='negative'
else:
pol = 'netral'
if sub>0.5:
sub = 'Subjektif'
else:
sub = "Objektif"
return pol, sub
In [25]:
kalimat = 'makan bakpia pakai kecap enak'
try:
SenSubModMood_ID(kalimat)
except:
print("Fungsi ini deprecated di TextBlob. Anda bisa gunakan https://translate.google.com secara manual\
atau secara automatis dengan menggunakan API-nya")
Fungsi ini deprecated di TextBlob. Anda bisa gunakan https://translate.google.com secara manual atau secara automatis dengan menggunakan API-nya
In [26]:
from textblob.sentiments import NaiveBayesAnalyzer
# Warning, mungkin lambat karena membentuk model classifier* terlebih dahulu.
# *Berdasarkan NLTK corpus ==> Language dependent
Sentence = "Textblob is amazingly simple to use"
blob = TextBlob(Sentence, analyzer=NaiveBayesAnalyzer())
blob.sentiment
# Good Explanation: https://medium.com/nlpython/sentiment-analysis-analysis-ee5da4448e37
# Output probabilitas prediksinya
Out[26]:
Sentiment(classification='pos', p_pos=0.7952586206896557, p_neg=0.2047413793103446)
Bagaimana dengan Sentiment Analysis menggunakan NBC untuk Bahasa indonesia?¶
In [27]:
import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
def word_feats(words):
return dict([(word, True) for word in words])
def bentukClassifier(wPos, wNeg): # ,Nt
positive_features = [(word_feats(pos), 'pos') for pos in wPos]
negative_features = [(word_feats(neg), 'neg') for neg in wNeg]
#neutral_features = [(word_feats(neu), 'neu') for neu in Nt]
train_set = negative_features + positive_features# + neutral_features
return NaiveBayesClassifier.train(train_set)
def prediksiSentiment(kalimat, wPos, wNeg, negasi):
pos, neg = 0.0, 0.0
posWords, negWords = [], []
K = tau.cleanText(kalimat)
for w in wPos:
if w in K:
for ww in negasi:
kebalikan = False
inverted = ww+' '+w
if inverted in K:
negWords.append(inverted)
kebalikan = True
break
if not kebalikan:
posWords.append(w)
for w in wNeg:
if w in K:
for ww in negasi:
kebalikan = False
inverted = ww+' '+w
if inverted in K:
posWords.append(inverted)
kebalikan = True
break
if not kebalikan:
negWords.append(w)
nPos, nNeg = len(posWords), len(negWords)
sum_ = nPos + nNeg
if sum_ == 0 or nPos==nNeg:
return 'netral', 0.0
else:
nPos, nNeg = nPos/sum_, nNeg/sum_
if nPos>nNeg and nPos>0.01:
return 'positif', nPos
elif nNeg>nPos and nNeg<-0.01:
return 'negatif', nNeg
else:
return 'netral', (nPos + nNeg)/2
In [28]:
wPos = ('keren', 'suka', 'cinta', 'bagus', 'mantap', 'sadis', 'top', 'enak', 'sedap')
wNeg = ('jelek', 'benci','buruk', 'najis')
wordS = (wPos, wNeg)
negasi = ['ga', 'tidak']
In [29]:
sentence = "makan pempek minumnya teh panas, biasa aja :)"
prediksiSentiment(sentence, wPos, wNeg, negasi)
Out[29]:
('netral', 0.0)
In [30]:
sentence = "makan gorengan sambil minum kopi, enak tenan"
prediksiSentiment(sentence, wPos, wNeg, negasi)
Out[30]:
('positif', 1.0)
Bagaimana jika mau melakukannya dengan model klasifikasi (supervised learning) lain seperti modul sebelumnya?¶
(e.g. SVM, NN, DT, k-NN, etc)
In [31]:
# text Classification : independent variable
d1 = 'Minum kopi pagi-pagi sambil makan pisang goreng is the best'
d2 = 'Belajar NLP dan Text Mining ternyata seru banget'
d3 = 'Palembang agak mendung hari ini'
d4 = 'Sudah lumayan lama tukang Bakso belum lewat'
d5 = 'Aduh ga banget makan Mie Ayam pakai kecap, please deh'
d6 = 'Benci banget kalau melihat orang buang sampah sembarangan di jalan'
d7 = 'Kalau liat orang ga taat aturan rasanya ingin ngegampar aja'
d8 = 'Nikmatnya meniti jalan jalan penuh romansa di tengah kota bernuansa pendidikan'
d9 = 'kemajuan bangsa ini ada pada kegigihan masyarakat dalam belajar dan bekerja'
D = [d1,d2,d3,d4,d5,d6,d7,d8,d9]
'Done!'
Out[31]:
'Done!'
In [32]:
# dependent variable, misal 0=positif, 1=netral, 2=negatif
Class = [0,0,1,1,2,2,2,1,0]
dic = {0:'positif', 1:'netral', 2:'negatif'}
print([dic[c] for c in Class])
['positif', 'positif', 'netral', 'netral', 'negatif', 'negatif', 'negatif', 'netral', 'positif']
In [33]:
# Bentuk VSM-nya seperti kemarin (skip preprocessing)
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(ngram_range=(1, 2))
vsm = vectorizer.fit_transform(D)
vsm = vsm[vsm.getnnz(1)>0][:,vsm.getnnz(0)>0] # Remove zero rows and columns
print(vsm.shape)
str(vectorizer.vocabulary_)[:200]
(9, 144)
Out[33]:
"{'minum': 91, 'kopi': 65, 'pagi': 104, 'sambil': 122, 'makan': 76, 'pisang': 114, 'goreng': 43, 'is': 51, 'the': 140, 'best': 28, 'minum kopi': 92, 'kopi pagi': 66, 'pagi pagi': 105, 'pagi sambil': 10"
In [34]:
# Lakukan klasifikasi (misal dengan SVM)
dSVM = svm.SVC(kernel='linear')
sen = dSVM.fit(vsm, Class).predict(vsm)
print(accuracy_score(Class, sen))
# Memakai seluruh training data karena sampel yang sangat kecil
1.0
In [35]:
import nltk, warnings; warnings.simplefilter('ignore')
import pandas as pd, taudataNlpTm as tau
from tqdm import tqdm
# Load DataFile CSV
dataSA = pd.read_csv('data/ind_SA.csv') # run locally
dataSA.head(), dataSA.shape
Out[35]:
( sentimen Tweet 0 -1 lagu bosan apa yang aku save ni huhuhuhuhuhuhu... 1 -1 kita lanjutkan saja diam ini hingga kau dan ak... 2 1 doa rezeki tak putus inna haa zaa larizquna ma... 3 1 makasih loh ntar kita bagi hasil aku 99 9 sisa... 4 -1 aku tak faham betul jenis orang malaysia yang ..., (10806, 2))
In [36]:
dataSA['tweet_cleaned'] = ''
dataSA.head()
Out[36]:
sentimen | Tweet | tweet_cleaned | |
---|---|---|---|
0 | -1 | lagu bosan apa yang aku save ni huhuhuhuhuhuhu... | |
1 | -1 | kita lanjutkan saja diam ini hingga kau dan ak... | |
2 | 1 | doa rezeki tak putus inna haa zaa larizquna ma... | |
3 | 1 | makasih loh ntar kita bagi hasil aku 99 9 sisa... | |
4 | -1 | aku tak faham betul jenis orang malaysia yang ... |
In [37]:
stopId, lemmaId = tau.LoadStopWords(lang='id')
for i, d in tqdm(dataSA.iterrows()):
doc = tau.cleanText(d.Tweet, lemma=lemmaId, stops = None, symbols_remove = True, min_charLen = 2, fixTag= True)
dataSA.at[i, "tweet_cleaned"] = doc
dataSA.head()
10806it [13:27, 13.38it/s]
Out[37]:
sentimen | Tweet | tweet_cleaned | |
---|---|---|---|
0 | -1 | lagu bosan apa yang aku save ni huhuhuhuhuhuhu... | lagu bosan apa yang aku save ni huhuhuhuhuhuhu... |
1 | -1 | kita lanjutkan saja diam ini hingga kau dan ak... | kita lanjut saja diam ini hingga kau dan aku e... |
2 | 1 | doa rezeki tak putus inna haa zaa larizquna ma... | doa rezeki tak putus inna haa zaa larizquna ma... |
3 | 1 | makasih loh ntar kita bagi hasil aku 99 9 sisa... | makasih loh ntar kita bagi hasil aku sisa buat... |
4 | -1 | aku tak faham betul jenis orang malaysia yang ... | aku tak faham betul jenis orang malaysia yang ... |
In [38]:
from sklearn.model_selection import train_test_split
seed = 99 # Biasakan menggunakan ini
testSize = 0.2
x_train, x_test, y_train, y_test = train_test_split(dataSA["tweet_cleaned"], dataSA["sentimen"],
test_size=testSize, random_state = seed)
print(x_train.shape, x_test.shape)
(8644,) (2162,)
In [39]:
from sklearn.feature_extraction.text import TfidfVectorizer
vsm = TfidfVectorizer(lowercase=True, smooth_idf= True, sublinear_tf=True,
ngram_range=(1, 2), max_df=0.90, min_df=2)
x_train = vsm.fit_transform(x_train) # "Fit_Transform"
x_test = vsm.transform(x_test) # Perhatikan disini hanya "Transform"
print(x_train.shape, x_test.shape) # Jumlah kolom Sama ==> ini penting
(8644, 19639) (2162, 19639)
Document Classification ~ Sentiment Analysis¶
In [40]:
from sklearn import neighbors
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix, classification_report
model = neighbors.KNeighborsClassifier()
kNN = model.fit(x_train, y_train)
y_kNN = kNN.predict(x_test)
print('Akurasi = ', accuracy_score(y_test, y_kNN))
print(confusion_matrix(y_test, y_kNN))
print(classification_report(y_test, y_kNN))
Akurasi = 0.4750231267345051 [[ 77 399 85] [ 71 818 214] [ 25 341 132]] precision recall f1-score support -1 0.45 0.14 0.21 561 0 0.53 0.74 0.61 1103 1 0.31 0.27 0.28 498 accuracy 0.48 2162 macro avg 0.43 0.38 0.37 2162 weighted avg 0.45 0.48 0.43 2162
In [41]:
from sklearn import svm
dSVM = svm.SVC()
dSVM.fit(x_train, y_train)
y_SVM = dSVM.predict(x_test)
print('Akurasi = ', accuracy_score(y_test, y_SVM))
print(confusion_matrix(y_test, y_SVM))
print(classification_report(y_test, y_SVM))
Akurasi = 0.6151711378353376 [[192 343 26] [ 82 970 51] [ 54 276 168]] precision recall f1-score support -1 0.59 0.34 0.43 561 0 0.61 0.88 0.72 1103 1 0.69 0.34 0.45 498 accuracy 0.62 2162 macro avg 0.63 0.52 0.53 2162 weighted avg 0.62 0.62 0.58 2162
In [42]:
from sklearn.neural_network import MLPClassifier
NN = MLPClassifier()
NN.fit(x_train, y_train)
y_NN = NN.predict(x_test)
print('Akurasi = ', accuracy_score(y_test, y_NN))
print(confusion_matrix(y_test, y_NN))
print(classification_report(y_test, y_NN))
Akurasi = 0.5698427382053654 [[269 198 94] [201 727 175] [ 71 191 236]] precision recall f1-score support -1 0.50 0.48 0.49 561 0 0.65 0.66 0.66 1103 1 0.47 0.47 0.47 498 accuracy 0.57 2162 macro avg 0.54 0.54 0.54 2162 weighted avg 0.57 0.57 0.57 2162
Optimasi Parameter¶
- Preprocessing di ML di optimalkan bergantung model.
- Parameter tiap model di ML berbeda-beda dan nilai optimalnya berbeda pada setiap kasus.
In [43]:
from sklearn.model_selection import cross_val_score, RandomizedSearchCV, GridSearchCV
from sklearn.pipeline import make_pipeline
In [44]:
# Optimal parameter k-NN dengan GRIDSEARCH
# https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
x_train, x_test, y_train, y_test = train_test_split(dataSA["tweet_cleaned"], dataSA["sentimen"],
test_size=testSize, random_state = seed)
# Perhatikan kita pakai data awal : Text karena kita akan optimalkan preprocessing juga
kCV = 5
metric = 'accuracy'
params = {}
params['tfidfvectorizer__min_df'] = [5, 10, 15]
params['tfidfvectorizer__max_df'] = [0.5, 0.75, 0.95]
params['tfidfvectorizer__smooth_idf'] = [True] # [True, False]
params['tfidfvectorizer__sublinear_tf'] = [True] # [True, False]
params['tfidfvectorizer__ngram_range'] = [(1, 1), (1, 2), (1,3)]
params['kneighborsclassifier__n_neighbors'] = [3, 5, 10]
params['kneighborsclassifier__weights'] = ('distance', 'uniform')
pipe = make_pipeline(TfidfVectorizer(), neighbors.KNeighborsClassifier())
gridCV = GridSearchCV(pipe, params, cv=kCV, scoring=metric, verbose=1, n_jobs=-1) # , pre_dispatch='2*n_jobs', pre_dispatch min 2* n_jobs
gridCV.fit(x_train, y_train)
print(gridCV.best_score_)
print(gridCV.best_params_)
Fitting 5 folds for each of 162 candidates, totalling 810 fits 0.46494802711907973 {'kneighborsclassifier__n_neighbors': 10, 'kneighborsclassifier__weights': 'distance', 'tfidfvectorizer__max_df': 0.5, 'tfidfvectorizer__min_df': 5, 'tfidfvectorizer__ngram_range': (1, 1), 'tfidfvectorizer__smooth_idf': True, 'tfidfvectorizer__sublinear_tf': True}
In [45]:
# Optimal parameter SVM dengan RandomSEARCH
# https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
pipeSVM = make_pipeline(TfidfVectorizer(), svm.SVC())
print(sorted(pipeSVM.get_params().keys()))
['memory', 'steps', 'svc', 'svc__C', 'svc__break_ties', 'svc__cache_size', 'svc__class_weight', 'svc__coef0', 'svc__decision_function_shape', 'svc__degree', 'svc__gamma', 'svc__kernel', 'svc__max_iter', 'svc__probability', 'svc__random_state', 'svc__shrinking', 'svc__tol', 'svc__verbose', 'tfidfvectorizer', 'tfidfvectorizer__analyzer', 'tfidfvectorizer__binary', 'tfidfvectorizer__decode_error', 'tfidfvectorizer__dtype', 'tfidfvectorizer__encoding', 'tfidfvectorizer__input', 'tfidfvectorizer__lowercase', 'tfidfvectorizer__max_df', 'tfidfvectorizer__max_features', 'tfidfvectorizer__min_df', 'tfidfvectorizer__ngram_range', 'tfidfvectorizer__norm', 'tfidfvectorizer__preprocessor', 'tfidfvectorizer__smooth_idf', 'tfidfvectorizer__stop_words', 'tfidfvectorizer__strip_accents', 'tfidfvectorizer__sublinear_tf', 'tfidfvectorizer__token_pattern', 'tfidfvectorizer__tokenizer', 'tfidfvectorizer__use_idf', 'tfidfvectorizer__vocabulary', 'verbose']
In [46]:
# Optimal parameter SVM dengan RandomizedSearch
paramsSVM = {}
paramsSVM['tfidfvectorizer__min_df'] = [5, 10, 30]
paramsSVM['tfidfvectorizer__max_df'] = [0.5, 0.75, 0.95]
paramsSVM['tfidfvectorizer__smooth_idf'] = [True] # [True, False]
paramsSVM['tfidfvectorizer__sublinear_tf'] = [True] # [True, False]
paramsSVM['tfidfvectorizer__ngram_range'] = [(1, 1), (1, 2), (1,3)]
paramsSVM['svc__C'] = [0.1, 10, 100] #sp.stats.uniform(scale=1)
paramsSVM['svc__gamma'] = [1.0, 0.1, 0.001]
paramsSVM['svc__kernel'] = ['rbf', 'poly', 'sigmoid', 'linear']
paramsSVM['svc__decision_function_shape'] = ['ovo', 'ovr']
randsvmCV = RandomizedSearchCV(pipeSVM, paramsSVM, cv=kCV, scoring=metric, verbose=1, n_iter=30, random_state=seed, n_jobs=-1) # , pre_dispatch='2*n_jobs' pre_dispatch min 2* n_jobs
randsvmCV.fit(x_train, y_train)
print(randsvmCV.best_score_)
print(randsvmCV.best_params_)
Fitting 5 folds for each of 30 candidates, totalling 150 fits 0.6074721392155603 {'tfidfvectorizer__sublinear_tf': True, 'tfidfvectorizer__smooth_idf': True, 'tfidfvectorizer__ngram_range': (1, 3), 'tfidfvectorizer__min_df': 5, 'tfidfvectorizer__max_df': 0.75, 'svc__kernel': 'rbf', 'svc__gamma': 1.0, 'svc__decision_function_shape': 'ovr', 'svc__C': 10}
In [47]:
# Optimal parameter ANN dengan RandomSEARCH
# https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
pipeNN = make_pipeline(TfidfVectorizer(), MLPClassifier())
print(sorted(pipeNN.get_params().keys()))
['memory', 'mlpclassifier', 'mlpclassifier__activation', 'mlpclassifier__alpha', 'mlpclassifier__batch_size', 'mlpclassifier__beta_1', 'mlpclassifier__beta_2', 'mlpclassifier__early_stopping', 'mlpclassifier__epsilon', 'mlpclassifier__hidden_layer_sizes', 'mlpclassifier__learning_rate', 'mlpclassifier__learning_rate_init', 'mlpclassifier__max_fun', 'mlpclassifier__max_iter', 'mlpclassifier__momentum', 'mlpclassifier__n_iter_no_change', 'mlpclassifier__nesterovs_momentum', 'mlpclassifier__power_t', 'mlpclassifier__random_state', 'mlpclassifier__shuffle', 'mlpclassifier__solver', 'mlpclassifier__tol', 'mlpclassifier__validation_fraction', 'mlpclassifier__verbose', 'mlpclassifier__warm_start', 'steps', 'tfidfvectorizer', 'tfidfvectorizer__analyzer', 'tfidfvectorizer__binary', 'tfidfvectorizer__decode_error', 'tfidfvectorizer__dtype', 'tfidfvectorizer__encoding', 'tfidfvectorizer__input', 'tfidfvectorizer__lowercase', 'tfidfvectorizer__max_df', 'tfidfvectorizer__max_features', 'tfidfvectorizer__min_df', 'tfidfvectorizer__ngram_range', 'tfidfvectorizer__norm', 'tfidfvectorizer__preprocessor', 'tfidfvectorizer__smooth_idf', 'tfidfvectorizer__stop_words', 'tfidfvectorizer__strip_accents', 'tfidfvectorizer__sublinear_tf', 'tfidfvectorizer__token_pattern', 'tfidfvectorizer__tokenizer', 'tfidfvectorizer__use_idf', 'tfidfvectorizer__vocabulary', 'verbose']
In [48]:
paramsNN = {}
paramsNN['tfidfvectorizer__min_df'] = [5, 10, 30]
paramsNN['tfidfvectorizer__max_df'] = [0.5, 0.75, 0.95]
paramsNN['tfidfvectorizer__smooth_idf'] = [True] # [True, False]
paramsNN['tfidfvectorizer__sublinear_tf'] = [True] # [True, False]
paramsNN['tfidfvectorizer__ngram_range'] = [(1, 1), (1, 2), (1,3)]
paramsNN['mlpclassifier__hidden_layer_sizes'] = [(5,10), (20,30), (30,50)]
paramsNN['mlpclassifier__learning_rate'] = ['constant', 'invscaling', 'adaptive']
paramsNN['mlpclassifier__activation'] = ['logistic', 'tanh', 'relu' ]
randNnCV = RandomizedSearchCV(pipeNN, paramsNN, cv=kCV, scoring=metric, verbose=1, n_iter=30, random_state=seed, n_jobs=-1) # , pre_dispatch='2*n_jobs' pre_dispatch min 2* n_jobs
randNnCV.fit(x_train, y_train)
print(randNnCV.best_score_)
print(randNnCV.best_params_)
Fitting 5 folds for each of 30 candidates, totalling 150 fits 0.5800556412398518 {'tfidfvectorizer__sublinear_tf': True, 'tfidfvectorizer__smooth_idf': True, 'tfidfvectorizer__ngram_range': (1, 1), 'tfidfvectorizer__min_df': 30, 'tfidfvectorizer__max_df': 0.75, 'mlpclassifier__learning_rate': 'constant', 'mlpclassifier__hidden_layer_sizes': (5, 10), 'mlpclassifier__activation': 'logistic'}
Model Selection¶
In [49]:
knn_score = gridCV.cv_results_['mean_test_score'][:10]
svm_score = randsvmCV.cv_results_['mean_test_score'][:10]
ann_score = randNnCV.cv_results_['mean_test_score'][:10]
ann_score
Out[49]:
array([0.54639001, 0.53840772, 0.51827639, 0.55460453, 0.52359933, 0.53030982, 0.55448838, 0.53563148, 0.54268852, 0.52221205])
In [50]:
import seaborn as sns, matplotlib.pyplot as plt
models = ['kNN', 'SVM', 'NN']
scores = [knn_score, svm_score, ann_score]
data = {m:s for m,s in zip(models, scores)}
for name in data.keys():
print("Accuracy %s: %0.2f (+/- %0.2f)" % (name, data[name].mean(), data[name].std() * 2))
sns.boxplot(data=pd.DataFrame(data), orient='h')
plt.show()
Accuracy kNN: 0.39 (+/- 0.06) Accuracy SVM: 0.53 (+/- 0.09) Accuracy NN: 0.54 (+/- 0.02)
Ensemble Model
- What? a learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions.
- Why? Better prediction, More stable model
- How? Bagging & Boosting
“meta-algorithms” : Bagging & Boosting¶
In [51]:
# Contoh Voting (Bagging) di Python
# Kita menggunakan semua parameter optimal dari langkah sebelumnya
from sklearn.ensemble import AdaBoostClassifier, VotingClassifier
x_train, x_test, y_train, y_test = train_test_split(dataSA["tweet_cleaned"], dataSA["sentimen"],
test_size=testSize, random_state = seed)
vsm = TfidfVectorizer(lowercase=True, smooth_idf= True, sublinear_tf=True,
ngram_range=(1, 1), max_df=0.95, min_df=10)
x_train = vsm.fit_transform(x_train) # "Fit_Transform"
x_test = vsm.transform(x_test) # Perhatikan disini hanya "Transform"
kNN = neighbors.KNeighborsClassifier(n_neighbors=10, weights='distance')
SVM = svm.SVC(C=0.1, gamma=1, kernel='rbf', decision_function_shape='ovr')
ann = MLPClassifier(hidden_layer_sizes=(5, 10), learning_rate='invscaling', activation='logistic')
ensemble = VotingClassifier(estimators=[('k-NN', kNN), ('SVM', SVM), ('ANN', ann)], voting='hard')
ensemble.fit(x_train, y_train)
y_ens = ensemble.score(x_test, y_test)
print('Akurasi k-NN = ', gridCV.best_score_)
print('Akurasi SVM = ', randsvmCV.best_score_)
print('Akurasi ANN = ', randNnCV.best_score_)
print('Akurasi Ensemble = ', y_ens)
Akurasi k-NN = 0.46494802711907973 Akurasi SVM = 0.6074721392155603 Akurasi ANN = 0.5800556412398518 Akurasi Ensemble = 0.562904717853839
In [52]:
kNN = neighbors.KNeighborsClassifier(n_neighbors=10, weights='distance')
SVM = svm.SVC(C=0.1, gamma=1, kernel='rbf', decision_function_shape='ovr', probability=True)
ann = MLPClassifier(hidden_layer_sizes=(5, 10), learning_rate='invscaling', activation='logistic')
ensemble = VotingClassifier(estimators=[('k-NN', kNN), ('SVM', SVM), ('ANN', ann)], voting='soft')
ensemble.fit(x_train, y_train)
y_ens = ensemble.score(x_test, y_test)
print('Akurasi k-NN = ', gridCV.best_score_)
print('Akurasi SVM = ', randsvmCV.best_score_)
print('Akurasi ANN = ', randNnCV.best_score_)
print('Akurasi Ensemble = ', y_ens)
Akurasi k-NN = 0.46494802711907973 Akurasi SVM = 0.6074721392155603 Akurasi ANN = 0.5800556412398518 Akurasi Ensemble = 0.6086956521739131
In [53]:
from sklearn.metrics import plot_confusion_matrix
fig, ax = plt.subplots(figsize=(10,10))
plt.rcParams.update({'font.size': 14})
class_names = ["Negatif", "Netral", "Positif"]
disp = plot_confusion_matrix(ensemble, x_train, y_train, display_labels=class_names, cmap=plt.cm.Blues, ax=ax)# , normalize='true'
disp.ax_.set_title("Confusion Matrix - Training")
print(disp.confusion_matrix)
[[2140 145 41] [ 65 4095 64] [ 42 158 1894]]
In [54]:
# Compared to training error to make sure overfitting not happening
ensemble_pred = ensemble.predict(x_test)
print(classification_report(y_test, ensemble_pred))
precision recall f1-score support -1 0.60 0.38 0.46 561 0 0.64 0.77 0.70 1103 1 0.52 0.50 0.51 498 accuracy 0.61 2162 macro avg 0.59 0.55 0.56 2162 weighted avg 0.60 0.61 0.60 2162
No comments:
Post a Comment
Relevant & Respectful Comments Only.